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Effective volumetric lattice Boltzmann scheme
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~Received 11 July 2000; published 24 April 2001!

An efficient fractional volumetric scheme is proposed for lattice Boltzmann method~LBM !. By reducing the
effective time step, the scheme possesses much better stability particularly for thermal LBM. The same
accuracy and simplicity of the standard LBM are preserved for achieving the Navier-Stokes equation. Since the
effective viscosity is reduced by the fraction factorp, the scheme becomes very effective for simulating high
Reynolds number thermal flows.
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I. INTRODUCTION

The lattice Boltzmann method~LBM ! was proposed a de
cade ago as an alternative numerical method to traditio
computational fluid dynamics~CFD! for simulating complex
fluid flows @1–3#. Unlike conventional methods based o
macroscopic continuum equations, the LBM starts from m
soscopic kinetic equations, i.e., the Boltzmann equation
determine macroscopic fluid dynamics. The kinetic nat
brings certain advantages over conventional numerical m
ods, such as easy handling of complex geometries, par
computation, consistent modeling of subgrid scale phys
and efficient multiphase simulations@4–7#.

In the standard lattice Boltzmann method, the well-kno
evolution equation of particle distribution function with
BGK collision operator can be written as the following:

f i~x1eidt,t1dt !5 f i8~x,t !5 f i~x,t !1V i„f i~x,t !…

~ i 50,1,...,M !, ~1!

V i„f i~x,t !…52
f i~x,t !2 f i

eq~x,t !

t
, ~2!

where ei is the given particle velocity andt is the single
relaxation time. The time-evolving procedure includes t
sequential steps:~1! a streaming step during which the pa
ticle moves to the neighboring node according to its p
described velocity, and~2! a collision step during which par
ticles at the same node interact with each other in such a
as to increase the local entropy while conserving cer
physical quantities, including mass, momentum, and ene

It has been shown that LBM is second-order accurate
both space and time@3#. Because of its marginal satisfactio
of the Courant-Friedrichs-Lewy~CFL! condition in isother-
mal cases, the standard LBM often encounters numerica
stability for low viscosity~small t, close to 0.5!. This prob-
lem becomes even more severe in thermal systems@3,8#.
Some modifications have been proposed to extend its o
of accuracy, stability, and implementation on general mes
@8–10#.

*Also at Department of Mechanical Engineering, Johns Hopk
University, Baltimore, MD 21218.
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In this paper, extending the volumetric concept@11# and
the fractional propagation scheme developed previously@12#
we present an efficient fractional volumetric scheme to i
prove the stability of thermal LBM while keeping the acc
racy and simplicity of the original LBM. The paper is orga
nized as follows. Section II is devoted to the formulation
the scheme. In Sec. III numerical simulations will be giv
to verify theoretical results. Conclusion and discussion w
be presented in the last section.

II. FORMULATION OF THE FRACTIONAL
VOLUMETRIC SCHEME

The basic purpose of the fractional volumetric scheme
by reducing the particle effective evolution time step, to
crease stability, remove unphysical spurious invariants,
achieve lower viscosity so that it is capable of simulati
higher Reynolds number flows. Unlike the standard LB
which transports all particle density in a streaming step to
neighboring site~except rest particles!, our scheme propa
gates one fraction of the density to the neighboring site wh
the other fraction remains at the original site@12#. The evo-
lution equation of particle distribution function for our ne
scheme can be expressed as

f i~x,t1dt !5pF f i8~x2eidt,t !1
~12p!

2
d f i8~x2eidt,t !G

1~12p!F f i8~x,t !2
p

2
d f i8~x,t !G , ~3!

d f i8~x,t !5eidt•“ f i85 f i8~x1eidt,t !2 f i8~x,t !, ~4!

wherep is a parameter determining the fraction of partic
propagation. Thef i8 stands for the post-collision quantitie
Without thed f i8 terms in Eq.~3!, the scheme is the same a
the one of Qian proposed in 1997. The inclusion ofd f i8
comes from the use of piecewise linear correction to
original piecewise uniform distribution density in a volume
ric representation. From a pointwise point of view, in ea
propagation, the particle on each lattice site cannot arriv
its neighbor sites. It can only move a distance 0<p<1 be-
tween lattice sites for each time step. Therefore, particle
tributions on lattice sites have to be interpolated. First-or
interpolation gives Qian’s scheme and second-order inte

s
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lation gives the same formulations as Eq.~3!. However, the
basic physical picture is clearer from volumetric point
view @11#. For simplicity, a one-dimensional case with un
form lattice is considered:

f i~x,t1dt !5E
x2cidt/2

x1cidt/2

f̃ ~x,t1dt !dx

5E
x2cidt/22pcidt

x2cidt/2

f̃ ~x,t !dx

1E
x2cidt/2

x1cidt/22pcidt

f̃ ~x,t !dx. ~5!

If we assume that the distribution off̃ (x,t) within each lat-
tice cell is constant, the above integration equation gives
~3! with the d f i8 term neglected. If the distribution off̃ (x,t)
is linear instead of uniform, Eq.~5! gives the same formula
as Eq.~3! when a forward finite difference scheme is used
calculate the first-order gradient. We should note here
the d f i8 term always satisfies the conservation laws exa
and the scheme achieves second-order accuracy. In fact,
an approach is not limited to uniform mesh, and, unlike
pointwise counterpart@10,13#, always preserves exact con
servations@11#.

The scheme can recover the macroscopic Navier-Sto
equations as the standard LBM without any additional ter
Assume that the long-wavelength and low-frequency lim
are of interest and the classical Chapman-Enskog expan
can be applied. The lattice unitsdx anddt can be regarded
as small parameters of the same order« compared with the
macroscopic characteristic scales. It leads to the follow
relations:

]

]t
5«

]

]t1
1«2

]

]t2
,

]

]x
5«

]

]x1
, ~6!

and

f i5 f i
eq1« f i

~1!1«2f i
~2!1¯ , ~7!

V i5V i
eq1«V i

~1!1«2V i
~2!1¯ . ~8!

Following the standard expansion procedure@3#, we obtain
the first two order equations:

] f i
eq

]t1
1pei•“1f i

eq52
f i

~1!

t
, ~9!

at « order and

] f i
eq

]t2
1S 12

1

2t D S ] f i
~1!

]t1
1pei•“1f i

~1!D 52
f i

~2!

t
, ~10!

at «2 order. We should note that the above equations h
the same forms, upon rescaling ofei to pei , as the perturba-
tion equations of the standard LBM@Eqs. ~15! and ~17! in
@3# #. ~Indeed whenp51, the perturbation equations of ou
volumetric scheme go exactly back to the standard LBM.! In
05670
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other words, the fractional volumetric scheme recovers
Navier-Stokes equations exactly at the second-order appr
mation.

The hydrodynamic quantities of fluid densityr(x,t) and
velocity u(x,t) are defined in the following standard way:

r~x,t !5(
i

f i
eq, ~11!

r~x,t !u~x,t !5(
i

ei f i
eq. ~12!

To derive the correct macroscopic hydrodynamic equatio
we use the standard equilibrium distribution functionf i

eq @3#:

f i
eq5rv iF11

ei•u

cs
2 1

~ei•u!2

2cs
4 2

u2

2cs
2G , ~13!

wherewi are weighting parameters@3# and cs is the sound
speed.

After some algebraic calculation, we arrive at the gove
ing equations,

]r

]t
1p“•ru50, ~14!

]~ru!

]t
1p“•~P~0!1P~1!!50, ~15!

whereP (n) is thenth-order momentum flux:

P~0!5(
i

eiei f i
eq5PI1ruu, ~16!

P~1!5S 12
1

2t D(
i

eiei f i
~1!5prn@~¹a~ub!1¹b~ua!#,

~17!

whereP5csr is the pressure, andn5cs
2(t2 1

2 ) is the shear
viscosity. Rescaling time by lettingt85pt, we obtain the
following rescaled equations:

]r

]t8
1“•ru50, ~18!

rF ]u

]t8
1u•“uG52“P1p@“•~rn“u!1“rn“•u#.

~19!

Since the fractional parameterp is always smaller than 1 in
the present scheme, the kinematic viscosity is reduced
early byp. For a given single particle relaxation timet, we
can achieve simulations of higher Reynolds number. Ho
ever, the price to pay is that the time step is increased b
factor of 1/p; therefore, a compromise of higher Reynol
numbers and efficient computing depends on the proble
studied.

The second advantage of the new scheme is the impr
ment of stability. According to previous studies@8,14# the
5-2
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EFFECTIVE VOLUMETRIC LATTICE BOLTZMANN SCHEME PHYSICAL REVIEW E63 056705
l5Dtuei u/Dx51 marginally satisfies the Couran
Friedrichs-Lewy condition for the standard LBM. In the fra
tional volumetric scheme, thel5pDtuei u/Dx is reduced by
the factor ofp. The CFL condition is better satisfied and f
the same Reynolds number isothermal simulation,
scheme is shown to be more stable than the standard L

This advantage is even more important for thermal m
els because, due to lack ofH theorem@15# the stability limi-
tation in the standard LBM is more severe than isotherm
models. Special treatment is needed to make the the
LBM more stable. Previous efforts along this line include t
active temperature scalar approaches@3# dynamical rate
scheme@9#, and so on. In these approaches, either algorith
are complicated or simulations are expensive.

The extension of the fractional volumetric scheme@Eq.
~3!# to thermal systems requires at least a three-speed m
@9#. The temperature is defined as

r~x,t !S D

2
T~x,t !1

1

2
u~x,t !2D5(

i j
e j f i j

eq~x,t !. ~20!

e j (5uei u2/2) denotes kinetic energy and the subscriptj is
the sublattice index representing the different energy lev
Particles with the same speed belong to the same subla
The collision operator is the same as Chen, Teixera,
Molvig used in@9# in which a new term is added to the BG
operator to allow for a variable Prandtl number.

V i j ~x,t !5 (
i 8, j 8

Mi j ,i 8 j 8@ f i 8 j 82 f i 8 j 8
eq

~x,t !#, ~21!

Mi j ,i 8 j 852
1

t
d i j ,i 8 j 82

1

t8

ei j •ei 8 j

dje j
d j j 8 . ~22!

The three-energy-level equilibrium distribution is

FIG. 1. Steady-state velocity profile in the two-dimension
channel. The solid line is the exact solution. The square is the re
of p51. The plus is the result ofp50.5. The circle is the result o
p50.2. All quantities are dimensionless.
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f i j
eq5rgj~T!F11

ei j •u

T
1

~ei j •u!2

2T2

2
u2

2T
1

~ei j •u!3

6T3 2
ei j •u

2T2 u2G , ~23!

wherei denotes the direction within the sublatticej. gj (T) is
determined by the following constraints fromn51 up to n
53 @9#:

(
j

dje j
ngj~T!5

D

2 S D

2
11D¯S D

2
1~n21! DTn, ~24!

(
j

djgj~T!51, ~25!

where D54 and dj524. Similarly to the isothermal case
the effective kinematic viscosity and thermal conductiv
are linearly proportional top,

n5p~t2 1
2 !T, ~26!

k5pS 2tt8

t12t8
2

1

2D3T. ~27!

III. NUMERICAL VERIFICATION

The first numerical simulation to study the accuracy of t
fractional volumetric scheme is the two-dimensional P
seuille flow, which has the following exact solution:

u5
h2g

2n

y

h S 12
y

hD , ~28!

l
ult

FIG. 2. Time evolution of the mean velocity in the two
dimensional channel. The solid line is the result ofp51. The
square is the result ofp50.5. The plus is the result ofp50.2. All
quantities are dimensionless.
5-3
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whereh is the width of the channel andg is the gravity. We
start from a uniform state of the flow field. With the effect
gravity, the fluid begins to move along the gravitational
rection and eventually reaches a steady state when the
cous force balances the gravity. Figure 1 shows the comp
son of the steady-state simulation results with the theore
solution. All simulations have the same viscosity, gravi
and Reynolds number (Re5208) with resolution 60326.
The velocities have been properly normalized byumean and
the distance has been normalized by the channel width.
solid line represents the analytic solution. The squa
pluses, and circles represent simulations withp51.0, 0.5,
and 0.2, respectively. To further demonstrate the accurac
the scheme, we plot the time evolution of the mean veloc
in Fig. 2 with solid line, square symbol, and plus symb

FIG. 3. Velocity profile ofu along the vertical centerline of th
cavity. ~b! Velocity profile of v along the horizontal centerline o
the cavity. The solid lines are results ofp51. The squares are
results ofp50.5. All quantities are dimensionless.
05670
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respectively, forp51.0, 0.5, and 0.2. The time has bee
normalized byh/umean. All results are in excellent agree
ment. The largest error is no more than 0.2%. The above
measures indicate that the fractional scheme gives as go
level of accuracy as the standard LBM.

The second benchmark is numerical simulation of cav
flow. An incompressible fluid is trapped in a square cav
and the flow is driven by a moving lid with a uniform veloc
ity U. This case has been extensively used as a benchma
study complex physics in a simple geometry and to test
merical schemes. The flow patterns exhibit rich behavi
depending on the Reynolds number, Re5UL/n.

There are abundant results in literature using differ
methods. In particular, Houet al. did a careful investigation
in 1995 using the standard LBM@16,17#. Here we compare
our results with theirs for Re5100 and 5000, particularly to
demonstrate the accuracy and stability of our scheme.

Two values ofp, 1 and 0.5, are used. Figure 3 shows t
velocity profiles for Re5100 with resolution 1003100. In
~a!, we plot the velocity profiles foru along the vertical
centerline of the box while we plot the velocity profiles forv
along the horizontal centerline in~b!. The solid lines repre-
sent the case ofp50.5 and square symbols represe
p51.0. The differences between the two cases in both p
are negligible. The velocity profiles compare well with th
results of Houet al. @16,17#. In Fig. 4, the contour of the
stream function is shown; in addition to the big center v
tex, two small secondary vortices appear in the lower c
ners. The locations of the vortex cores are measured
listed in Table I. All of the locations agree well with th
results of Houet al. with 2562 resolution @16,17#. These
agreements indicate again that the fractional volume
scheme is as accurate as the original LBM at the same r
lution for low Re.

We then conduct a similar simulation with the same re
lution, 1002, but much higher Reynolds number, Re55000.
For the standard LBM, i.e.,p51.0, the simulation is un-
stable. However, when we reducep50.5, the simulation be-
comes stable and the steady-state solution is plotted in Fi

FIG. 4. Stream line of Re5100 andp50.5 in the cavity. Reso-
lution is 1003100.
5-4
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TABLE I. Location of vortex centers.

Vortex Center Lower left Lower right Upper left

Standard (Re5100) ~0.6196,0.7373! ~0.0392,0.0353! ~0.9451,0.0627!
Volumetric (Re5100) ~0.62,0.73! ~0.04,0.03! ~0.95,0.06!
Standard (Re55000) ~0.5176,0.5373! ~0.0784,0.1373! ~0.8078,0.0745! ~0.0667,0.9059!
Volumetric (Re55000) ~0.52,0.53! ~0.09,0.13! ~0.82,0.08! ~0.06,0.09!
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A third secondary vortex appears in the upper left corn
The locations of the center are also listed in Table I.

The results show good agreement with Hou’s results w
higher resolution. Since the viscosity is effectively reduc
by a factor ofp in the fractional volumetric scheme, we ca
achieve higher Reynolds number flows while the stand
LBM may become unstable. Furthermore, considering
computational efficiency, the speed of our simulation is
creased by a factor ofp(Lstd/Lvolm)d11 compared with
Hou’s simulation speed to get results at the same phys
time, which is 8.5 in this case. HereLstd/Lvolm stands for the
resolution ratio andd is the space dimension.

In the third case, we show the improvement of stability
thermal LBM using our volumetric scheme. What we tes
is a two-dimensional pure viscous decaying simulation us
the thermal LBM discussed in the preceding section. Sup
imposed on a constant mean velocityu0 is a small local
random momentum perturbation. Since periodic bound
conditions are used in all directions, the total momentu
total mass, and total energy (kinetic energy1internal energy)
are always conserved. In the simulation, the mean flow
locity is ūx5u050.15, the mean temperature isT̄50.5, the
Prandtl number Pr51, and the amplitude of initial perturba
tion is 1%. The resolution of the simulation is 50350.

Figure 6 shows the minimum achievable viscosityn ver-
sus the fractionp. When p51, the corresponding larges
Reynolds number achievable is about Re5u0 L/n526.8.
When p decreases, the minimumn decreases nearly expo
nentially. Whenp50.5, the largest Reynolds number can

FIG. 5. Stream line of Re55000 andp50.5 in the cavity. Reso-
lution is 1003100.
05670
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as high as Re51250. As discussed in the previous sectio
the Courant numberl5Dtuei u/Dx5p,1. The better satis-
faction of the CFL condition brings about much better s
bilities. In real implementations, the extra cost of memo
and gradient calculation in the fractional volumetric prop
gation for each time step is minor. In fact, the real co
comes from the additional simulation time steps for achi
ing results at the same physical time whenp,1. The total
simulation time step is scaled by a factor of 1/p. This trade-
off is very worthy while considering the required stabili
that we expect for most of the thermal LBM.

Besides the CFL condition, we think another explanat
for improved stability may also be plausible. According
the study of Qian in 1997, undesired staggered spurious
variants in LBM could produce large oscillations and lead
instability. The choice of fractionp effectively removes
those undesired staggered invariants. Only whenp,1, can
those staggered invariants be damped. Combining comp
tional efficiency and accuracy, the optimal choice of the fra
tion p is 0.5. Indeed,p50.5 gives significantly lower viscos
ity and better stability compared to the standard LBM wh
computational time is doubled.

IV. CONCLUSION AND DISCUSSION

In this paper, we have proposed a fractional volume
scheme for LBM. This scheme can fully recover the Navi

FIG. 6. The achievable minimum viscosityn vs p in thermal
LBM.
5-5



c
re
y

,
as
e
v

o
is
c

the
of
is-
d in

nd

ZHANG, CHEN, QIAN, AND CHEN PHYSICAL REVIEW E63 056705
Stokes equations and has the same second-order accura
the standard LBM. Because the viscosity is effectively
duced by a factor ofp, the scheme can simulate higher Re
nolds number flows. Also because the typical time stepdt is
reduced by a factor ofp in the fractional volumetric scheme
the CFL condition can be better satisfied. The scheme h
much enhanced stability compared to the standard LBM,
pecially in thermal situations. This enables us to achie
much higher Reynolds number. The present scheme als
fectively removes some unphysical spurious invariants ex
ing in the standard LBM. Compared with a previous fra
05670
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tional model@17#, the present scheme need not rescale
velocity field. A straightforward and important application
this scheme is the multiphase thermal models with low v
cosity. The fractional volumetric scheme can also be use
formulation of coarse grained models for turbulence@18#.

ACKNOWLEDGMENTS

We are grateful to Dr. David Freed, Dr. A. J. Ladd, a
Dr. Nick Martys for their useful discussions.
J.
@1# U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett.56,
1505 ~1986!.

@2# R. Benzi, S. Succi, and M. Vergassola, Phys. Rep.222, 145
~1992!.

@3# S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech.30, 329
~1998!.

@4# D. H. Rothman and S. Zaleski, Rev. Mod. Phys.66, 1417
~1994!.

@5# X. Shan and H. Chen, Phys. Rev. E47, 1815~1993!.
@6# M. Swift, W. Osborn, and J. Yeomans, Phys. Rev. Lett.75,

830 ~1995!.
@7# X. He, S. Chen, and R. Zhang, J. Comput. Phys.152, 642

~1999!.
@8# N. Cao, S. Chen, S. Jin, and D. Martinez, Phys. Rev. E55,

2124 ~1997!.
@9# H. Chen, C. Teixeira, and K. Molvig, Int. J. Mod. Phys.8, 675
~1997!.

@10# H. He and G. D. Doolen, Phys. Rev. E56, 434 ~1997!.
@11# H. Chen, Phys. Rev. E58, 3955~1998!.
@12# Y. H. Qian, Int. J. Mod. Phys.8, 753 ~1997!.
@13# X. He, L. Luo, and M. Dembo, J. Comput. Phys.129, 357

~1996!.
@14# J. D. Sterling and S. Chen, J. Comput. Phys.123, 196 ~1996!.
@15# H. Chen and C. Teixeira, Comput. Phys. Commun.129, 21

~2000!.
@16# S. Hou, Ph.D. thesis, Kansas State University, Kansas~1995!.
@17# S. Hou, Q. Zou, S. Chen, G. D. Doolen, and A. C. Cogley,

Comput. Phys.118, 329 ~1995!.
@18# H. Chen, S. Succi, and S. Orszag, Phys. Rev. E59, 2527

~1999!.
5-6


