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Effective volumetric lattice Boltzmann scheme
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An efficient fractional volumetric scheme is proposed for lattice Boltzmann métt®id ). By reducing the
effective time step, the scheme possesses much better stability particularly for thermal LBM. The same
accuracy and simplicity of the standard LBM are preserved for achieving the Navier-Stokes equation. Since the
effective viscosity is reduced by the fraction facfprthe scheme becomes very effective for simulating high
Reynolds number thermal flows.
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I. INTRODUCTION In this paper, extending the volumetric concgpt] and
the fractional propagation scheme developed previdusty
The lattice Boltzmann method BM) was proposed a de- we present an efficient fractional volumetric scheme to im-
cade ago as an alternative numerical method to traditiongirove the stability of thermal LBM while keeping the accu-
computational fluid dynamic&CFD) for simulating complex racy and simplicity of the original LBM. The paper is orga-
fluid flows [1-3]. Unlike conventional methods based on nized as follows. Section Il is devoted to the formulation of
macroscopic continuum equations, the LBM starts from methe scheme. In Sec. Ill numerical simulations will be given
soscopic kinetic equations, i.e., the Boltzmann equation, téo verify theoretical results. Conclusion and discussion will
determine macroscopic fluid dynamics. The kinetic naturebe presented in the last section.
brings certain advantages over conventional numerical meth-
ods, such as easy handling of complex geometries, parallel Il. FORMULATION OF THE FRACTIONAL
computation, consistent modeling of subgrid scale physics, VOLUMETRIC SCHEME
and efficient multiphase simulatiofg—7].
In the standard lattice Boltzmann method, the well-known ~The basic purpose of the fractional volumetric scheme is,
evolution equation of particle distribution function with a Py reducing the particle effective evolution time step, to in-

BGK collision operator can be written as the following: ~ Ccrease stability, remove unphysical spurious invariants, and
achieve lower viscosity so that it is capable of simulating

fi(x+edt,t+6t) =1/ (x,t)=f;(x,t) +Q;(fi(x,1)) higher Reynolds number flows. Unlike the standard LBM,
which transports all particle density in a streaming step to the

(i=0,1,...M), (1) neighboring site(except rest particles our scheme propa-
gates one fraction of the density to the neighboring site while
fi(x,t)—fFqx,t) the other fraction remains at the original gie?]. The evo-
Qifixt))=—-———, (2)  lution equation of particle distribution function for our new

.
scheme can be expressed as

where g is the given particle velocity and is the single

relaxation time. The time-evolving procedure includes two f (x t+ st)=p

sequential stepgl) a streaming step during which the par-

ticle moves to the neighboring node according to its pre-

described velocity, an) a collision step during which par- +(1-p)

ticles at the same node interact with each other in such a way

as to increase the local entropy while conserving certain

physical quantities, including mass, momentum, and energy. sfi(x)=got- Vi =f/(x+edt,t)—fi(xt), (4

It has been shown that LBM is second-order accurate in

both space and timk8]. Because of its marginal satisfaction Wherep is a parameter determining the fraction of particle

of the Courant-Friedrichs-Lew§CFL) condition in isother- ~propagation. The/ stands for the post-collision quantities.

mal cases, the standard LBM often encounters numerical ilWithout the 5f; terms in Eq.(3), the scheme is the same as

stability for low viscosity(small 7, close to 0.5 This prob-  the one of Qian proposed in 1997. The inclusion &f

lem becomes even more severe in thermal systggr§. comes from the use of piecewise linear correction to the

Some modifications have been proposed to extend its orderiginal piecewise uniform distribution density in a volumet-

of accuracy, stability, and implementation on general meshesc representation. From a pointwise point of view, in each

[8-10]. propagation, the particle on each lattice site cannot arrive at
its neighbor sites. It can only move a distance <1 be-
tween lattice sites for each time step. Therefore, particle dis-

*Also at Department of Mechanical Engineering, Johns Hopkingributions on lattice sites have to be interpolated. First-order
University, Baltimore, MD 21218. interpolation gives Qian’s scheme and second-order interpo-

(1-p)

fl(x—gdtt)+ >

5fi’(x—qé‘t,t)}

: ()

fi,(X,t) - g 5f|/(X,t)
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lation gives the same formulations as E8). However, the other words, the fractional volumetric scheme recovers the

basic physical picture is clearer from volumetric point of Navier-Stokes equations exactly at the second-order approxi-

view [11]. For simplicity, a one-dimensional case with uni- mation.

form lattice is considered: The hydrodynamic quantities of fluid densipyx,t) and
velocity u(x,t) are defined in the following standard way:

X+Cjot/2_
fi(x,t+ &):f f(x,t+ ot)dx
X—¢; 8t/2 p(x,t)=2, f&, (12)
X*Ci(‘)\t/z _ !
=f f(x,t)dx
X G2 pGat p(x,t)u(x,t)=2 gffd. (12)
X+¢j8t/2—pe; ot !
+f f(x,t)dx. (5) ) , i i
X—c;ot/2 To derive the correct macroscopic hydrodynamic equations,

_ we use the standard equilibrium distribution functfgf[3]:
If we assume that the distribution 6{x,t) within each lat- 5
tice cell is constant, the above integration equation gives Eq. e ol 14 E+
(3) with the 6f/ term neglected. If the distribution d{x,t) Lol cs
is linear instead of uniform, Ed5) gives the same formula o )
as Eq.(3) when a forward finite difference scheme is used towherew; are weighting paramete{$] andcs is the sound
calculate the first-order gradient. We should note here thatP€ed. _ _ _
the 8f/ term always satisfies the conservation laws exactly After some algebraic calculation, we arrive at the govern-
and the scheme achieves second-order accuracy. In fact, s}y €quations,
an approach is not limited to uniform mesh, and, unlike its

(g-u)? u

2cd  2cz)

(13

pointwise counterparfl0,13, always preserves exact con- &—p+pV.pu=0, (14
servationgd 11]. Jt
The scheme can recover the macroscopic Navier-Stokes
equations as the standard LBM without any additional terms. dpy) +pV-(IIO+1IY)=0 (15)
Assume that the long-wavelength and low-frequency limits ot '
are of interest and the classical Chapman-Enskog expansion ) _
can be applied. The lattice unix and 6t can be regarded Wherell'” is thenth-order momentum flux:
as small parameters of the same orderompared with the
macroscopic characteristic scales. It leads to the following 9=> eef%=PI+puu, (16)
relations: i
d d g d d o[, 1 1)
EISE"FSZE, 5:88_)(1' (6) I _<1 27_)2' Qeﬁ _ppv[(va(uﬁ)+vﬁ(ua)]l
17)
and
whereP=c¢p is the pressure, and= cg(r— 1) is the shear
fi=f% efVte2fD .. (7)  viscosity. Rescaling time by letting’ =pt, we obtain the
following rescaled equations:
Q=08% QM +£20P+- - (8) ;
p
Following the standard expansion proced[8& we obtain W+V-pu=0, (18)
the first two order equations:
afea f(L p ﬁ+u-Vu =—VP+p[V-(prVu)+VprV-ul.
— = pg- Vyff=— —, ) o'
oty T (19

at e order and Since the fractional parametpris always smaller than 1 in
" - the present scheme, thg kinemat'ic viscosity is rgduced lin-
1 i ﬂ%— Rvax Te01 f._ early byp. For a given single particle relaxation timewe
27)\ oty P& Vali P can achieve simulations of higher Reynolds number. How-
ever, the price to pay is that the time step is increased by a
at €2 order. We should note that the above equations havéactor of 1p; therefore, a compromise of higher Reynolds
the same forms, upon rescalinge®fto pg , as the perturba- numbers and efficient computing depends on the problems

af

T (10)

tion equations of the standard LBMEQs. (15) and (17) in

[3]]. (Indeed whermp=1, the perturbation equations of our

volumetric scheme go exactly back to the standard LBIN.

studied.
The second advantage of the new scheme is the improve-
ment of stability. According to previous studigg8,14] the
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FIG. 1. Steady-state velocity profile in the two-dimensional
channel. The solid line is the exact solution. The square is the resugi
of p=1. The plus is the result gd=0.5. The circle is the result of
p=0.2. All quantities are dimensionless.

FIG. 2. Time evolution of the mean velocity in the two-
mensional channel. The solid line is the result mwf1l. The
square is the result gf=0.5. The plus is the result gf=0.2. All
guantities are dimensionless.

A=At|g|/Ax=1 marginally satisfies the Courant- U (e-u)?
Friedrichs-Lewy condition for the standard LBM. In the frac- fe9=pg,(T)| 1+ e'l_+ G .
tional volumetric scheme, the= pAt|e|/Ax is reduced by ! . T 2T
the factor ofp. The CFL condition is better satisfied and for (e-u)d e -u
the same Reynolds number isothermal simulation, the R '—3_ '_2 2
scheme is shown to be more stable than the standard LBM. 2T 6T 2T
This advantage is even more important for thermal mod- _ L L . )
els because, due to lack Hftheorem[15] the stability limi-  Wherei denotes the direction within the sublattice;(T) is
tation in the standard LBM is more severe than isothermafi€termined by the following constraints from=1 up ton
models. Special treatment is needed to make the thermai 3 L9
LBM more stable. Previous efforts along this line include the
active temperature scalar approacti® dynamical rate 2 d-e”g-(T)zE(E+1
schemd9], and so on. In these approaches, either algorithms o e 2\2
are complicated or simulations are expensive.
The extension of the fractional volumetric scheffs.
(3)] to thermal systems requires at least a three-speed model > digi(T)=1, (25
[9]. The temperature is defined as :

U2

: (23

D
---(E+(n—1))T“, (24)

D 1 where D=4 andd;=24. Similarly to the isothermal case,
p(x,t) ET(x,t)+ Eu(x,t)2 =Z efiixt). (200 the effective kinematic viscosity and thermal conductivity
g are linearly proportional t,

€; (=|el?/2) denotes kinetic energy and the subscyifz

— 1
the sublattice index representing the different energy levels: v=plr=2)T, (26)
Particles with the same speed belong to the same sublattice. ,
The collision operator is the same as Chen, Teixera, and k=p 277 _E) 3T, 27)
Molvig used in[9] in which a new term is added to the BGK T+27 2

operator to allow for a variable Prandtl number.

Ill. NUMERICAL VERIFICATION

N - o[ f,—fEd ' . . .
Qj;(x) IEJ Mijir [T =To5 (XD, (2Y) The first numerical simulation to study the accuracy of the

fractional volumetric scheme is the two-dimensional Poi-

1 1 ej-e seuille flow, which has the following exact solution:
M'Jv"]’:_;allvl,]’_;—de 5”, (22)
i€ 2
u= M X — X (28)
The three-energy-level equilibrium distribution is 2v h h)’
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FIG. 4. Stream line of Re100 andp=0.5 in the cavity. Reso-
lution is 100x 100.

0.250

respectively, forp=1.0, 0.5, and 0.2. The time has been
normalized byh/unyea, All results are in excellent agree-
ment. The largest error is no more than 0.2%. The above two
measures indicate that the fractional scheme gives as good a
level of accuracy as the standard LBM.

The second benchmark is numerical simulation of cavity
flow. An incompressible fluid is trapped in a square cavity
and the flow is driven by a moving lid with a uniform veloc-
ity U. This case has been extensively used as a benchmark to
study complex physics in a simple geometry and to test nu-
merical schemes. The flow patterns exhibit rich behaviors
depending on the Reynolds number,=Rél /v.

There are abundant results in literature using different
methods. In particular, Hoat al. did a careful investigation

0.125

-0.125

-0.250 : T T I r T T in 1995 using the standard LBIWL6,17. Here we compare
0.00 0.25 0.50 0.75 1.00 our results with theirs for Re100 and 5000, particularly to
x demonstrate the accuracy and stability of our scheme.
(b) Two values ofp, 1 and 0.5, are used. Figure 3 shows the

velocity profiles for Re=100 with resolution 108 100. In

(@), we plot the velocity profiles fou along the vertical
centerline of the box while we plot the velocity profiles for
along the horizontal centerline ). The solid lines repre-
sent the case ofp=0.5 and square symbols represent
p=1.0. The differences between the two cases in both plots
whereh is the width of the channel arglis the gravity. We  are negligible. The velocity profiles compare well with the
start from a uniform state of the flow field. With the effect of results of Houet al. [16,17. In Fig. 4, the contour of the
gravity, the fluid begins to move along the gravitational di- stream function is shown; in addition to the big center vor-
rection and eventually reaches a steady state when the vitex, two small secondary vortices appear in the lower cor-
cous force balances the gravity. Figure 1 shows the compariiers. The locations of the vortex cores are measured and
son of the steady-state simulation results with the theoreticdisted in Table I. All of the locations agree well with the
solution. All simulations have the same viscosity, gravity,results of Houet al. with 256 resolution[16,17. These
and Reynolds number (Re&08) with resolution 6&26. agreements indicate again that the fractional volumetric
The velocities have been properly normalizedy.,,and  scheme is as accurate as the original LBM at the same reso-
the distance has been normalized by the channel width. Thetion for low Re.

solid line represents the analytic solution. The squares, We then conduct a similar simulation with the same reso-
pluses, and circles represent simulations with 1.0, 0.5, lution, 10¢, but much higher Reynolds number, -R8000.

and 0.2, respectively. To further demonstrate the accuracy dfor the standard LBM, i.ep=1.0, the simulation is un-
the scheme, we plot the time evolution of the mean velocitystable. However, when we redupe=0.5, the simulation be-

in Fig. 2 with solid line, square symbol, and plus symbol, comes stable and the steady-state solution is plotted in Fig. 5.

FIG. 3. Velocity profile ofu along the vertical centerline of the
cavity. (b) Velocity profile of v along the horizontal centerline of
the cavity. The solid lines are results pf=1. The squares are
results ofp=0.5. All quantities are dimensionless.
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TABLE I. Location of vortex centers.

Vortex Center Lower left Lower right Upper left
Standard (Re100) (0.6196,0.7378 (0.0392,0.0358 (0.9451,0.062y
Volumetric (Re=100) (0.62,0.73 (0.04,0.03 (0.95,0.06
Standard (Re5000) (0.5176,0.5378 (0.0784,0.1378 (0.8078,0.074p (0.0667,0.905p
Volumetric (Re=5000) (0.52,0.53 (0.09,0.13 (0.82,0.08 (0.06,0.09

A third secondary vortex appears in the upper left corneras high as Re1250. As discussed in the previous section,
The locations of the center are also listed in Table I. the Courant numbek =At|g|/Ax=p<1. The better satis-

The results show good agreement with Hou's results witffaction of the CFL condition brings about much better sta-
higher resolution. Since the viscosity is effectively reducedjlities. In real implementations, the extra cost of memory
by a factor ofp in the fractional volumetric scheme, we can and gradient calculation in the fractional volumetric propa-
achieve higher Reynolds number flows while the standargation for each time step is minor. In fact, the real cost
LBM may become unstable. Furthermore, considering th&omes from the additional simulation time steps for achiev-
computational efficiency, the speed of our simulation is in-ing results at the same physical time wheq 1. The total
creased by a factor op(Lga/Lyom) " compared with  simulation time step is scaled by a factor op 1This trade-
Hou’s simulation speed to get results at the same physicalff is very worthy while considering the required stability
time, which is 8.5 in this case. Hetgy/L o Stands for the  that we expect for most of the thermal LBM.
resolution ratio andi is the space dimension. Besides the CFL condition, we think another explanation

In the third case, we show the improvement of stability offor improved stability may also be plausible. According to
thermal LBM using our volumetric scheme. What we testecthe study of Qian in 1997, undesired staggered spurious in-
is a two-dimensional pure viscous decaying simulation usingariants in LBM could produce large oscillations and lead to
the thermal LBM discussed in the preceding section. Supefinstability. The choice of fractiorp effectively removes
imposed on a constant mean velocity is a small local those undesired staggered invariants. Only wherl, can
random momentum perturbation. Since periodic boundaryhose staggered invariants be damped. Combining computa-
conditions are used in all directions, the total momentumtional efficiency and accuracy, the optimal choice of the frac-
total mass, and total energy (kinetic enetgyternal energy)  tion pis 0.5. Indeedp= 0.5 gives significantly lower viscos-
are always conserved. In the simulation, the mean flow veity and better stability compared to the standard LBM while
locity is Uy=uy=0.15, the mean temperatureTs=0.5, the = computational time is doubled.
Prandtl number Rt 1, and the amplitude of initial perturba-
tion is 1%. The resolution of the simulation is $60. IV. CONCLUSION AND DISCUSSION

Figure 6 shows the minimum achievable viscosityer-
sus the fractionp. When p=1, the corresponding largest  In this paper, we have proposed a fractional volumetric
Reynolds number achievable is about =RgL/»=26.8. scheme for LBM. This scheme can fully recover the Navier-
When p decreases, the minimum decreases nearly expo-
nentially. Whenp=0.5, the largest Reynolds number can be  ©-30

v/

FIG. 5. Stream line of Re5000 andp= 0.5 in the cavity. Reso- FIG. 6. The achievable minimum viscosityvs p in thermal
lution is 100x 100. LBM.
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Stokes equations and has the same second-order accuracytiasal model[17], the present scheme need not rescale the
the standard LBM. Because the viscosity is effectively re-velocity field. A straightforward and important application of
duced by a factor op, the scheme can simulate higher Rey- this scheme is the multiphase thermal models with low vis-

nolds number flows. Also because the typical time stefs

cosity. The fractional volumetric scheme can also be used in

reduced by a factor gf in the fractional volumetric scheme, formulation of coarse grained models for turbulefit8].
the CFL condition can be better satisfied. The scheme has a

much enhanced stability compared to the standard LBM, es-

pecially in thermal situations. This enables us to achieve
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